
Using Mitrion-C to Implement Floating-Point Arithmetic on a Cray XD1
Supercomputer

Kevin K. Liu, Charles B. Cameron, and Antal A. Sarkady
Department of Electrical & Computer Engineering, US Naval Academy (USNA), Annapolis, MD

liu.kevin.k@gmail.com and {cameronc, sarkady}@usna.edu

Abstract

 Field-Programmable Gate Arrays (FPGAs) are of
interest to the high performance computing (HPC)
computing community because they offer lower power
consumption and higher throughput compared to
traditional processors. Recently, the implementation of
floating-point operations on FPGAs has become possible
as the amount of memory available on FGPAs has
increased. Unfortunately, advances in technology have
also increased the complexity of creating hardware
designs for FPGAs. In this project, we describe our
experiences using the Mitrion-C high-level language to
implement floating-point calculations on a Cray XD1.
We report resource consumption, throughput, and power
consumption and conclude that Mitrion simplifies the
hardware design process while successfully harnessing
the computational power of FPGAs at little additional
cost to power consumption.

1. Introduction

 The scientific community is interested in using field-
programmable gate arrays for scientific computations
because Field-Programmable Gate Arrays (FPGAs) can
be targeted for specific applications and achieve greater
throughput at a lower power cost.[1–3] However, these
gains can usually only be achieved by a user with expert
knowledge of hardware design. Therefore, despite
improvements in FPGA technology that have allowed
their use to become attractive for a wider range of
applications, inexperience with hardware design remains
a barrier for many.
 High-level languages use a variety of approaches to
reduce the complexity of hardware design. We chose to
use Mitrion-C for this project because it was readily
available at the Naval Research Laboratory, where this
work was done, and because it is a commercial product
with fast and effective support services. Mitrion-C makes
hardware design more accessible in two ways. First,

algorithms are described in the Mitrion-C programming
language, which uses “C-like” syntax and structures, such
as functions and loops. Second, the Mitrion Integrated
Development Environment (IDE) packages together a
user interface, compiler, and simulator. Figure 1 shows
the necessary steps of hardware and highlights the steps
that Mitrion IDE executes.

Figure 1. Hardware design flow

 In hardware design using a traditional hardware
description language (HDL) such as Very High Speed
Integrated Circuit HDL (VHDL), both simulation and
synthesis are time consuming and synthesis can often fail,
requiring modification of the code. The Mitrion IDE
simulates and generates VHDL in one step and also
estimates whether a design will fit, based on the target
hardware’s limitations. Therefore, as long as there are no
syntax errors in the Mitrion code, the VHDL synthesis
will most likely be successful, with the exception of cases
where resource consumption exceeds the resources of the
FPGA by a very small margin.
 One downside of using a high-level language is that
the hardware designer loses a level of control. Although
Mitrion-C offers explicit options for pipelining, how it
achieves its optimizations is opaque to the user. We
sought, therefore, to not only measure the performance of
designs using Mitrion-C, but also to predict future
performance based on our results.

DoD HPCMP Users Group Conference 2008

978-0-7695-3515-9 2008

U.S. Government Work Not Protected by U.S. Copyright

DOI 10.1109/DoD.HPCMP.UGC.2008.40

391

Authorized licensed use limited to: US Naval Academy. Downloaded on February 5, 2010 at 07:24 from IEEE Xplore. Restrictions apply.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
JUL 2008 2. REPORT TYPE

3. DATES COVERED
 00-00-2008 to 00-00-2008

4. TITLE AND SUBTITLE
Using Mitrion-C to Implement Floating-Point Arithmetic on a Cray XD1
Supercomputer

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
United States Naval Academy,Department of Electrical & Computer
Engineering,Annapolis,MD,21402

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
Proceedings of the DoD HPCMP Users Group Conference (HPCMP-UGC’08), pp. 391?395, 14?17 July
2008

14. ABSTRACT
Field-Programmable Gate Arrays (FPGAs) are of interest to the high performance computing (HPC)
computing community because they offer lower power consumption and higher throughput compared to
traditional processors. Recently, the implementation of floating-point operations on FPGAs has become
possible as the amount of memory available on FGPAs has increased. Unfortunately, advances in
technology have also increased the complexity of creating hardware designs for FPGAs. In this project, we
describe our experiences using the Mitrion-C high-level language to implement floating-point calculations
on a Cray XD1. We report resource consumption, throughput, and power consumption and conclude that
Mitrion simplifies the hardware design process while successfully harnessing the computational power of
FPGAs at little additional cost to power consumption.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

5

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

2. Methodology

 The simulation of the interaction of a ray of light
with an optical element—assuming that the element is a
conic surface—requires several calculations. We chose to
look at two in particular: the intersection point of a ray
with an element, and the vector normal to the element’s
surface at the point of intersection. These two
calculations are illustrated in Figure 2.

Figure 2. Interaction of a ray of light with an optical

element

 For our purposes, the two calculations can be reduced
to a system of arithmetic operations, as described by
Spencer and Murty.[4] For the ray-intersection problem,
they are:

 ()()0 0 01.0g N c x L y M k z N= − + + + (1a)

 ()()2 2 2
0 0 0 01.0 2h c x y k z z= + + + − (1b)

 ()21f c kN= + (1c)

2

hu
g g fh

=
+ −

 (1d)

 1 0x uL x= + (1e)

 1 0y uM y= + (1f)

 1 0z uN z= + (1g)

The ray-intersection calculation requires 11 floating-point
additions, 3 subtractions, 19 multiplications, 1 division,
and 1 square root.
 The system of equations for the normal-vector
calculation is presented next.

 ()2 2v u x y= + (2a)

 1a v= − (2b)

 1p a= + (2c)

 q ap= (2d)

 r pq= (2e)

 2s q= (2f)

 /w c r= (2g)

 ()b w s v= + (2h)

 q bx
x
∂

=
∂

 (2i)

 q by
y
∂

=
∂

 (2j)

22

1q qe
x y

⎛ ⎞∂ ∂⎛ ⎞= + +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
 (2k)

 1/f e= (2l)

 ˆ , ,N
q q f
x y

⎛ ⎞∂ ∂
= ⎜ ⎟∂ ∂⎝ ⎠

a (2m)

 In this calculation, the term u is defined as u=(1+k)c2.
The normal-vector calculation requires 5 additions, 1
subtraction, 13 multiplications, 2 divisions, and 2 square
roots. The result is given as the three components of the
normal vector, âN , as shown in Figure 2.
 One might observe that in the ray-intersection
calculation, the term k+1.0 is used twice—once in Eq. 1a
and again in Eq. 1b. It would be expected, then, that
Mitrion would simply use the same result twice rather
than perform two identical calculations. However, the
number of floating-point units reported reflects the output
of the Mitrion simulator. We also wrote a separate
program to isolate this issue and found that separate
additions were in fact implemented. Therefore, the count
of 11 additions for the ray-intersection calculation is
accurate.

3. Implementation

 We used Mitrion-C version 1.4 to implement the two
calculations. Figure 3 shows the data flow between the
Mitrion-C and host programs. Each of the Quad-Data
Rate (QDR) memories directly available to the Virtex-II
Pro contains 4 MB of space for input/output, for a total of
16 MB of input and output. Since many scientific
applications require more than 16 MB of input and output,
a host program is needed to mar-shall data between the

392

Authorized licensed use limited to: US Naval Academy. Downloaded on February 5, 2010 at 07:24 from IEEE Xplore. Restrictions apply.

FPGA’s memory and host memory present on the same
compute node.

Figure 3. Data flow between host and FPGA programs

 We wrote the host program using the American
National Standards Institute’s standard for C (ANSI-C)
and ran it on one of the Advanced Micro Devices (AMD)
Opteron 275 processors on the same compute node as the
FPGA. The Cray XD1 uses an interconnect system that
allows data transfer between the FPGA and host RAM at
a rate of 3.2 GB/s.[5] Mitrion-C uses the full bandwidth
provided by Cray.
 In the host program, each of the FPGA’s QDR
memories is treated as an array. The host program loads
values into the arrays, sends the FPGA a start signal using
a function provided by Mitrionics, and reads the results
after it receives a done signal back from the FPGA.
 The Mitrion-C program was split into three functions
that: 1) read the inputs from QDR memory, 2) performed
floating-point calculations, and 3) wrote the results to a
different QDR memory. We stored our data in a list
data structure and ran the program in a foreach loop.
This combination explicitly instructs the Mitrion compiler
to automatically pipeline the design, as stated in the
Mitrion-C documentation[6].

4. Results

 As a benchmark we compared the performance of the
Mitrion-C implementations of the ray-intersection
calculation and normal-vector calculation to ANSI-C
programs. The power and throughput measurements
isolated the calculation-intensive portions of each of the
programs.

4.1. Throughput

 Each of the 4 MB memories available to the the
Virtex-II Pro has a bit-width of 64 bits. We implemented
our calculations using the 32-bit width IEEE single-
precision floating-point representation. This means that
each memory can hold 220 or 1 048 576 floating-point
numbers. We initially used two QDR memories for input
and two for output. In the case of the normal-vector
calculation, which requires four inputs, one set of four
inputs could be read each clock cycle. However, in the
case of ray-intersection calculation, using only two
memories for input required two clock cycles to read each
set of eight inputs. Therefore, we wrote a second version
of the ray-intersection calculation that used four
memories for input and observed a doubling in
throughput, as shown in Table 1.

Table 1. Throughput measurements

 Operton 275 Virtex-II Pro
Rays traced 1 073 741 824

Ray-intersection calculation

Time (s) 219.54 21.49
Throughput (rays/s) 4.891 × 106 4.996 × 107

Ray-intersection, using 4 inputs

Time (s) — 10.75
Throughput (rays/s) — 9.988 × 107

Normal-vector calculation

Time (s) 114.79 10.75
Throughput (rays/s) 9.354 × 106 9.988 × 107

 Although all four of the FPGA’s memories were used
for input, two of the memories had to be used for output
as well. Mitrion-C provides memory synchronization
commands that enable bidirectional use of the FPGA’s
memories with no effect on throughput. We also checked
a representative set of data to ensure no data corruption or
overlapping had occurred.

4.2. Resource Consumption

 The resource consumption reported in Table 2 was
taken from the report generated by the Xilinx Integrated
Synthesis Environment (ISE) after the place-and-route
step. The amount of resources consumed by each design
gives insight into how much additional optimization is
possible.
 In the case of the normal-vector calculation, the
measured throughput was 99.88×106 rays/s, which
corresponds to approximately one ray calculated for every
clock cycle, given a 100MHz clock. Since the QDR

393

Authorized licensed use limited to: US Naval Academy. Downloaded on February 5, 2010 at 07:24 from IEEE Xplore. Restrictions apply.

memories had a bit-width of 64 bits, or 8 bytes, the
throughput of each memory was about

()6bytes/ray rays MB/s
8 99.88 10 799.04

memory s memory
× × = . This

result indicates that the memory was used at very near its
maximum theoretical bandwidth of 3.2 GB/s, or 800
MB/s per memory. Therefore, the only way to improve
throughput would have been to use additional QDR
memories as both inputs and outputs.
 The normal-vector calculation consumed over 70%
of slices, the term Xilinx uses to refer to the basic
reconfigurable logic unit within an FPGA. Had we used
additional QDR memories, requiring additional floating-
point logic, we would likely have exceeded the resources
of the FPGA. Low-level customization beyond the
capabilities of Mitrion-C would have been required to
implement more floating-point calculations without
making the design too large.
 In contrast, the floating-point logic implemented in
the ray-intersection calculation was capable of producing
one calculation per clock cycle because it was
implemented within a foreach loop and so throughput
was only limited by the fact that the input memories could
provide one set of inputs every two clock cycles. Using
four memories for input instead of two did not affect the
resources needed to implement the floating-point logic,
but removed the bottelneck imposed by the input
memories. Table 2 shows that using four memories for
input instead of two cost a small amount of resources and
did not exceed the resources of the FPGA.

Table 2. Resource consumption comparison

Resource (Total) Implemented (Percent)

Ray-intersection calculation

Slices (23616) 19 044 (81%)
Flip Flops (47 232) 26 508 (56%)
4-input LUTs (47 232) 26 250 (56%)
Block RAMs (232) 25 (11%)
Multipliers (232 18×18) 72 (31%)

Ray-intersection, using 4 inputs

Slices (23616) 20 593 (87%)
Flip Flops (47 232) 26 688 (56%)
4-input LUTs (47 232) 26 579 (56%)
Block RAMs (232) 25 (11%)
Multipliers (232 18×18) 72 (31%)

Normal-vector calculation

Slices (23616) 16 571 (70%)
Flip Flops (47 232) 21 670 (46%)
4-input LUTs (47 232) 20 466 (43%)
Block RAMs (232) 23 (11%)
Multipliers (232 18×18) 72 (31%)

4.3. Power Consumption

 We measured power with Cray’s Hardware
Supervisory Subsystem (HSS), software that runs on the
management processor of each chassis within the Cray
XD1 and monitors the health of the system. Table 3
reports our results. Our measurements showed that a
node with an FPGA will consume
130.94 102.65

27.56%
102.65

−
= more power than a node without

an FPGA consumes while idling. However, we also
found that in the case of a node with an FPGA present,
using the FPGA for processing requires at most
143.66 139.84

2.73%
139.84

−
= more power than implementing

an equivalent calculation on the Opteron 275 processor
alone.

Table 3. Power measurements

Node Type Implementation
Total Power

(watts)
No FPGA Idle 102.65
FPGA Idle 130.94

Ray-intersection calculation

No FPGA Sequential Only 110.87
FPGA Sequential Only 139.57
FPGA FPGA 141.13

Normal-vector calculation

No FPGA Sequential Only 111.84
FPGA Sequential Only 139.84
FPGA FPGA 143.66

 We only measured the power consumed when
running the version of the ray-intersection calculation that
used two memories for input. However, the version that
used four memories is unlikely to draw significantly more
power, judging by the similarity in resources consumed.

5. Discussion

 As mentioned before, the maximum bandwidth of the
interconnect, between the FPGA’s QDR memories and
the host memories, is 3.2 GB/s. This means that each of
the four QDR memories makes up 800 MB/s of that total.
Since each FPGA memory can read or write 64 bits (8
bytes) every clock cycle, the 100 MHz clock used by
Mitrion makes use of the maximum 800 MB/s bandwidth
of the memories.
 Our measurements confirmed that a throughput very
near the limit of the memories—799.04MB/s in the case
of the normal-vector calculation—could be maintained
over a large sample of data. We conclude that Mitrion-C

394

Authorized licensed use limited to: US Naval Academy. Downloaded on February 5, 2010 at 07:24 from IEEE Xplore. Restrictions apply.

is a straightforward way to achieve the maximum
throughput allowed by the memory bandwidth, given that
the intended design fits on the target FPGA.

6. Conclusion

 In this paper, we explored the ability of the high-level
language Mitrion-C to simplify the implementation of
floating-point operations on FPGAs. We found that
Mitrion-C was different enough from ANSI-C to require a
significant investment of time to be able to use it
effectively, but that Mitrion-C significantly reduces the
time spent in the hardware design cycle. In terms of
throughput, we found that Mitrion-C could achieve the
maximum theoretical throughput allowed by memory
bandwidth in cases where the design easily fit on the
FPGA and memory operations could be completed in one
clock cycle. However, we observed that low-level
programming would still be needed to make small
tradeoffs between throughput and resource consumption.
Finally, we found that maintaining FPGAs requires
roughly a constant 30% increase in power consumption,
but that in cases where FPGAs are present on a compute
node, using them for processing requires roughly only 3%
additional power over using a sequential processor alone.
We recommend Mitrion-C as a tool to exploit the
processing power of FPGAs, given that the intended
application does not exceed the resource limits of the
target hardware.

Acknowledgments

 This work was supported in part by a grant of
computer time from the Department of Defense High
Performance Computing Modernization Program at the
Naval Research Laboratory (NRL). It was also supported
by Kenneth Sarkady, Head of the Infrared
Countermeasures Systems Section. In addition, the
authors would like to thank the many scientists including
Jeanie Osburn, Wendell Anderson, Rick Hurd, and Ray
Yee at NRL, who willingly shared their time and
expertise.

References

1. Koo, J., A. Evans, and W. Gross, “Accelerating a medical 3D
brain MRI analysis algorithm using a high-performance
reconfigurable computer.” Field Programmable Logic and
Applications, 2007, FPL 2007. International Conference, pp.
11–16, 27–29 Aug. 2007.
2. Kindratenko, V.V., R.J. Brunner, and A.D. Myers, “Mitrion-C
Application Development on SGI Altix 350/RC100.” Field-
Programmable Custom Computing Machines, FCCM 2007, 15th
Annual IEEE Symposium, pp. 239–250, 23–25 April 2007.
3. Mitrionics AB, Accelerate your applications—unleash the
massive performance of FPGAs, available online at
http://www.mitrion.com/press/Mitrion product_brief.pdf.
4. Spencer, G.H. and M.V.R.K. Murtry, “General ray-tracing
procedure.” J. Opt Soc. Ameri., vol. 52, no. 6, pp. 652–678, June
1962.
5. Cray, Inc., “Cray XD1 datasheet.” Cray Inc., Tech. Rep., June
2005, available online at http://www.cray.com/downloads/Cray
XD1_Datasheet.pdf.
6. Mohl, S., The Mitrion-C programming language, Mitrionics
Inc., 2006, available online at http://www.mitrionics.com/.

395

Authorized licensed use limited to: US Naval Academy. Downloaded on February 5, 2010 at 07:24 from IEEE Xplore. Restrictions apply.

